国内土壤科研进展年第13期研

导读

在细菌群落装配过程介导土壤剖面SOC代谢方面取得进展等9则进展。

来源:根据中国科学院、中科院南京土壤所、南京农业大学资环学院、浙江大学资环学院等单位网站近期相关报道整理

南京土壤所在细菌群落装配过程介导土壤剖面SOC代谢方面取得进展

土壤微生物群落的装配对于理解微生物群落调节生态系统水平功能的机制至关重要。随机过程和确定过程共同决定了微生物群落装配,已有研究表明微生物装配过程会对微生物成员施加约束并影响微生物的功能。但是随机过程和确定过程对剖面土壤微生物群落装配的相对贡献以及其造成的土壤有机碳(SOC)动态变化尚不明确,这限制了对深层土壤SOC动态变化机制的解析。

南京土壤研究所孙波课题组针对中亚热带典型的贫瘠旱地红壤,设置4种不同施肥试验处理,在5个土壤剖面深度(0-80cm)研究细菌群落的装配机制及SOC代谢功能。结果表明,随着土壤深度增加,细菌群落装配由确定性选择主导转变为随机性扩散主导。β-零偏差模型和迁移率证实深层土壤中扩散影响相对较大的科学假设。酸杆菌门和绿弯菌门作为细菌群落中两个最优势种群,其装配过程与整体细菌群落装配过程趋同。结构方程模型的结果表明,土壤因子(pH和总磷)和细菌互作网络(竞争和网络复杂性)与表层土壤(0-10cm和10-20cm)的细菌群落组成显著相关。偏Mantel检验和随机森林模型表明,细菌群落装配可能调控了土壤剖面SOC变化过程,提示随机扩散对群落装配的贡献随土壤坡面深度增加而增加,细菌的随机装配过程可能抑制了SOC代谢和矿化速率。该研究结果有助于理解随机性和确定性过程间平衡机制,解析了微生物群落装配和SOC动力学的潜在关系,为微生物群落装配介导深层SOC代谢动态变化提供了理论依据。

以上研究成果发表在mSystems上。该成果得到了国家重点基金,国家优秀青年基金和江苏省杰出青年基金的资助。

文章链接

  

图2.新碳和老碳在表层和深层土壤中的分布的PCA分析

深层土壤水分时空动态演变规律及其对植被更替响应研究获进展

土壤和水是地球关键带的核心组成部分,土壤水分运动是地球关键带中物质和能量迁移转化的主要驱动力之一。在气候变化和人类活动的影响下,土壤水分运动的频率、幅度和空间范围均发生了明显变化,在时间上表现为与降水事件、植被耗水的强耦合,在空间上表现为土壤水循环深度的不断加深及对区域水循环的正负效应。因此,探明气候变化和人类活动共同影响下地球关键带深层土壤水分的时空变化规律及其对植被更替的响应,有助于深化对地球关键带土壤水分运动规律、土壤水文过程模拟及土地利用优化管理的科学认识。季风区黄土高原关键带中的水蚀风蚀交错带是典型的生态脆弱区,对土壤水分变化尤为敏感,是探究这一科学问题的理想区域。

最近,中国科学院地球环境研究所研究员王云强团队选择黄土关键带水蚀风蚀交错区的典型小流域,对流域内4种不同利用方式(农地、灌木地、天然草地和人工草地)的深剖面(21m)土壤水分进行原位监测(20次,年-年),同步获取植被、土壤、气象等环境因子,利用Hydrus-1D模型模拟与情景分析,研究了黄土关键带深层土壤水分的时空动态变化规律及其对植被更替的响应。

研究发现:(1)土壤水分生态在垂直方向上表现出高度空间变异性。在0m-2m深度,土壤质地和根系生物量共同控制土壤水分的时间与空间变异性,而气象因素仅对土壤水分的时间变异性有显著影响;在2m-21m深度,土壤质地控制土壤水分的空间变异性,而土壤质地和根系生物量则共同控制土壤水分的时间变异性;(2)Hydrus-1D模型能准确模拟长时间尺度下0m-21m土壤水分的时空动态变化,并且在受气象因素影响较小的深层土壤中,模型模拟效果更好;(3)在模拟不同人类活动影响下(即,不同的植被更替情境),植被更替对不同深度土壤水分的效应存在差异:在深层(3.4m-4.8m),地表植被由浅根植物更替为深根植物时将加剧深层土壤干燥化。在浅层(0m-1.2m),当农地更替为灌木地(柠条)后,对土壤水分的影响在雨季表现为补给效应,在旱季表现为消耗效应。因此进行土地利用配置和植被更替时,应充分考虑当地气候条件(尤其是降水)、前期土壤水分状况和植被耗水特性,选择合适的植被类型。

该成果已在线发表于国际期刊Catena上,研究工作得到中科院战略性先导科技专项(XDA23071)和国家自然科学基金(、、)等的共同资助。

论文链接



转载请注明地址:http://www.shanghaibinbei.com/kfbf/11525.html
  • 上一篇文章:
  • 下一篇文章: 没有了
  • 热点文章

    • 没有热点文章

    推荐文章

    • 没有推荐文章